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Abstract 19 

This paper assesses the accuracy of seven empirical models and an explicit Gene-Expression 20 
Programming (GEP) model to predict wave runup against a large dataset of runup observations. 21 
Observations consist of field and laboratory measurements and include a wide array of beach types 22 
with varying sediment sizes (from fine sand to cobbles) and bed roughness (from smooth steel to 23 
asphalt). We show that the best performing models in the literature are prone to significant errors 24 
(minimum RMSE of 1.05 m and NMSE of 0.23) when used with unseen data, i.e., uncalibrated models; 25 
however, overall error values and correlations are significantly reduced when models are optimised 26 
for the dataset. The best performing empirical models use a Hunt type scaling with an additional 27 
parameter for wave induced setup. The predictive ability of the explicit GEP model, which better 28 
captures the complex nonlinear effects of the key factors on the wave runup length, resulted in a 29 
statistically significant improvement in predictive capacity in comparison to all other empirical models 30 
assessed here, even on unseen data. Wave height, wavelength, and beach slope are shown to be the 31 
three primary factors influencing wave runup, with grain size/bed roughness having a smaller, but still 32 
significant influence on the runup. The r2 of the best optimised existing models (which takes the form 33 
of Holman (1986) and Atkinson et al. (2017) their M2 model) was 0.77, with a RMSE of 0.85 m. These 34 
were improved to an r2 of 0.82 (6% increase) and RMSE of 0.75 m (12% decrease) in the GEP-based 35 
model. The sensitivity of the proposed GEP-based model to each input variable is assessed via a partial 36 
derivative sensitivity analysis. The results demonstrate a higher sensitivity in the model to small values 37 
of each input and that wave steepness and beach slope are the primary factors influencing wave 38 
runup.  39 

  40 



H Power: Runup and GEP Page 2 of 30 07 May. 19 
 

1. Introduction  41 

Wave runup represents the landward limit of wave action on a beach. It consists of a combination of 42 
two processes: swash and wave generated setup (Holman 1986). The wave runup region is of crucial 43 
importance for coastal engineering and management applications: from wave overtopping of coastal 44 
barriers and engineering structures to predicting coastal erosion and recovery during and subsequent 45 
to storm events to coastal engineering structure design. It is also the region of sediment exchange 46 
between the subaqueous and subaerial beach.  47 

The most common way to predict runup is to use empirical formulae to predict the vertical level of 48 
wave runup relative to the still water level (or mean offshore ocean water level) and this approach 49 
has been used since the 1950’s (Wassing 1957, Hunt 1958). These formulae often aim to predict 50 
statistical parameters such as Rmax and R2%. Rmax represents the maximum runup elevation observed 51 
within a given time period (and is therefore a function of the sampling period), while R2% represents 52 
the level exceeded by 2% of runup events within a time period and, given constant wave conditions, 53 
should be independent of sampling period.  54 

The majority of empirical formulae are designed to be able to predict wave runup levels using easily 55 
obtainable parameters such as offshore wave conditions and beach conditions. Most models typically 56 
include some combination of wave height and wavelength (H and L) and beach (or swash zone) slope 57 
(tanβ). Models have been developed using either laboratory and/or field data and by fitting models 58 
to the runup observed. The limitations of both of these techniques were recently discussed by 59 
Atkinson et al. (2017).  60 

One common model scaling that is used in several empirical models is the scaling developed by Hunt 61 
(1958) of 𝛼𝛼 tan𝛽𝛽 √𝐻𝐻𝐻𝐻 where α is a scaling parameter adjusted to improve the data-model fit (e.g., 62 
Hunt 1958, Mase 1989, Van Der Meer and Stam 1992). In some cases, an additional term is added to 63 
represent the wave setup: 𝛼𝛼 tan𝛽𝛽 √𝐻𝐻𝐻𝐻 + 𝛾𝛾𝛾𝛾 where α and γ are independent scaling parameters (e.g., 64 
Holman 1986, Hedges and Mase 2004, Atkinson et al. 2017). Few empirical models include bed 65 
roughness or grainsize in their formulations; one recent exception is Poate et al. (2016). Further detail 66 
on the range and variation of empirical runup models can be found in recent works by Blenkinsopp et 67 
al. (2016) and Atkinson et al. (2017) who provided detailed overviews of the wide range of empirical 68 
models that are frequently used to predict wave runup.  69 

Atkinson et al. (2017) recently assessed the accuracy of 11 empirical runup models using a field data 70 
set collected on 11 intermediate beaches on the east Australian coast. They observed large variability 71 
in the natural runup measurements and high variability in the accuracy of different runup model 72 
predictions. Three R2% models were identified as the most accurate: Holman (1986), Vousdoukas 73 
(2012), and Atkinson et al. (2017) M2 which each gave errors of ~25% of R2%; however, there were 74 
significant differences in the RMSE for different models on the same beach and significant differences 75 
in RMSE for the same model on different beaches. Models derived from field data performed 76 
significantly better when predicting runup in the field than models derived from lab data. Most 77 
significantly, no single model gave the best runup estimates for all beaches in their dataset, suggesting 78 
that un-calibrated model predictions on an arbitrarily selected beach can be prone to significant error. 79 
Site-specific nearshore wave transformation effects and local variations in surf zone profiles may 80 
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contribute to these errors, however, these are typically not included to maintain ease of use of 81 
empirical equations.  82 

In an attempt to further improve wave runup predictions on beaches, this paper makes use of artificial 83 
intelligence (AI) based techniques which have grown substantially in various engineering sciences, 84 
particularly water and ocean engineering, due to their ability to solve complex nonlinear problems. 85 
The most popular AI-based techniques in this field are artificial neural networks (ANNs), adaptive 86 
neuro-fuzzy inference systems, and support vector machines. Although these three methods have 87 
been shown to have acceptable performance for solving water engineering problems (e.g., Azimi et 88 
al. 2016, Sharafi et al. 2016, Ebtehaj et al. 2018, Moradi et al., 2018, Gholami et al., 2018), their main 89 
drawback is their inability to provide an explicit expression to employ in future work, limiting 90 
transferability and application. To overcome this limitation, the AI technique Gene-Expression 91 
Programming (GEP) was developed and is increasingly being used as an efficient method for modelling 92 
nonlinear and complex processes (Ferreira 2001). One of the key benefits of the GEP technique is that 93 
it produces an explicit predictive expression as opposed to AI techniques like ANNs which do not 94 
produce an explicit expression and are thus limited in their transferability. Examples of applications 95 
that have used GEP include global climate analysis (Barbulescu and Băutu 2009), flow discharge (Azimi 96 
et al. 2017), shear stress distribution (Khozani et al. 2017), scour depths (Azamathulla 2012), sediment 97 
transport (Ebtehaj and Bonakdari 2017), and wave breaking (Robertson and Gharabaghi 2017; 98 
Robertson et al. 2017).  99 

1.1. Gene expression programming  100 

The GEP technique combines two popular genetic-based techniques: the genetic algorithm technique 101 
of describing complex relations by simpler, fixed length, linear structures called chromosomes 102 
(referred to as the genotype, e.g., Table 1) and the genetic programming technique of using expression 103 
tree (ET) structures with different sizes and shapes (referred to as the phenotype, e.g., Table 1). This 104 
harnesses the advantages of each of the two methods and overcomes their individual constraints. In 105 
the GEP method, the solution to the problem being investigated is described via chromosomes that 106 
consist of one or more genes. Each gene consists of a head and a tail. The head contains both symbols 107 
that represent functions (addition, subtraction, etc.) and symbols that represent the variables in the 108 
problem (in the case of wave runup, offshore wave height, wavelength, etc.), while the tail consists of 109 
only variables (see Table 1). Each gene codes for an ET of varying length that will always describe a 110 
mathematically valid algebraic expression. The length of the ET will depend on the order and 111 
positioning of the elements in the gene: the shortest ET will derive from a gene that has a variable as 112 
the first element of the gene, and the longest ET will derive from a gene that has only functions in the 113 
head. As an example, the single gene described in Table 1 creates a valid and complete ET using only 114 
the first 15 elements, i.e., the last six elements in the gene are not expressed. Two or more genes can 115 
be combined to make a chromosome, where each gene in the chromosome codes for a sub-ET with 116 
the sub-ETs being combined through a chosen linking function (e.g., addition, multiplication, etc.; see 117 
example in Table 1).  118 

The first step in GEP is to randomly initialise a population of individuals, whereby each individual 119 
consists of one chromosome containing a specified number of genes that are combined using a sub-120 
ET linking function. Each gene has a fixed head size and is made up of the user-specified functions and 121 
variables. Each individual in the initial population is then represented as an ET and the efficiency or 122 
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compatibility degree of each individual is evaluated using a fit function (e.g., root-mean-square error, 123 
correlation, etc.). The individuals with greater fitness are selected for replication while some 124 
individuals are replicated with random modifications using different genetic operators. The linear 125 
structure of the chromosomes in the GEP method makes it possible to use a range of genetic 126 
operators, such as random mutation and recombination, to construct valid structures and to evolve 127 
existing structures in the same way in which genetic material in natural organisms is replicated and 128 
mutated. Examples of ways in which genes and chromosomes can be modified through genetic 129 
operators and thus evolve from one generation to the next are shown in Table 2. This process of 130 
replication and modification results in new offspring being generated creating a subsequent 131 
generation of the population. This process can be repeated until a certain criterion is met (e.g., 132 
number of generations, minimum fit function value, etc.). A flowchart schematising the GEP model 133 
technique is shown in Figure 1 and a full explanation of the GEP algorithm can be found in Ferreira 134 
(2001).  135 

The main objective of the current study is the development of an explicit, GEP-derived expression to 136 
predict wave runup and to gain insights into the factors controlling wave runup using this novel 137 
method. Moreover, this study assesses the performance of seven empirical runup models against a 138 
large dataset of runup observations. To the authors’ knowledge, this is the largest runup dataset 139 
compiled in the literature. The empirical models are also optimised to obtain the lowest error by 140 
varying their coefficients. A GEP-based explicit expression is developed and tested against the dataset, 141 
with corresponding analysis on the relative importance of the variables incorporated in the model. 142 
The paper is organised as follows. The runup dataset is described in Section 2. Empirical runup models 143 
are detailed in Section 3 and the GEP model is described in Section 4. Results are presented in Section 144 
5 and are discussed in Section 6. Final conclusions follow in Section 7.  145 

 146 

2. Runup dataset 147 

In order to accurately assess the performance of existing empirical runup models, a large dataset of 148 
1390 observations of R2% was collated. The dataset primarily consisted of field data, with a small 149 
proportion of laboratory data (148 observations).  150 

Field datasets, consisting of R2%, offshore wave conditions, and beach face slopes, were obtained from 151 
datasets freely available online and data provided by colleagues (Table 3). Details of the field 152 
experiments can be found in Stockdon et al. (2006), Poate et al. (2016), Nicolae Lerma et al. (2017), 153 
and Atkinson et al. (2017). The compiled field dataset represents a wide range of beach conditions 154 
from low to high energy (0.35m≤Hs≤7.17m, where Hs is significant wave height) with a wide range of 155 
peak wave periods (3.7s≤Tp≤23.7s) and beach slopes (0.0090≤tanβ≤0.29), and from fine sand 156 
(D50=0.2mm) to pebbles (D50=5cm). The approximation Hs=1.41Hrms was used to convert between 157 
offshore significant wave height and offshore root mean square wave height (Hrms) where required. 158 
Details of each field dataset, including wave parameters, beach slope, and grain size, are shown in 159 
Table 3. 160 

The laboratory datasets consisted of both large- and small-scale irregular wave data on plane slopes. 161 
The dataset of Mase (1989) consists of small-scale data with a range of wave conditions and beach 162 
slopes on a smooth steel bed. Published and unpublished data from laboratory experiments (SASME 163 
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experiments by Baldock and Huntley, 2002) were incorporated and consisted of a range of wave 164 
conditions on a fixed polyethylene slope. Data from Howe (2016) was from the Large Wave Flume 165 
(Großer Wellenkanal, GWK) at Leibniz Universität Hannover with a 1:6 slope and varying wave 166 
conditions with two different bed types: a solid asphalt bed and a polyethylene bed. Details of each 167 
laboratory dataset, including wave parameters, beach slopes, and hydraulic roughness lengths, are 168 
shown in Table 4. 169 

The hydraulic roughness length, r, was used to compare bed roughness between field and laboratory 170 
data. For the field data, grain size was converted to a roughness length using r=2.5D50 (Nielsen, 1992, 171 
p. 105). For the laboratory data, roughness lengths for smooth steel and polyethylene were obtained 172 
from standard look-up tables, and Howe (2016) provided an equivalent D50 for the solid asphalt bed 173 
(Table 4).  174 

The full compiled dataset is available as supplementary material to this manuscript.  175 

 176 

3. Empirical runup models 177 

The performance of several empirical models was assessed by comparing predicted runup values to 178 
the observed values from the combined field and laboratory dataset. A total of seven empirical models 179 
were chosen for assessment: Holman (1986), Nielsen and Hanslow (1991), Stockdon et al. (2006), 180 
Vousdoukas et al. (2014), Poate et al. (2016) their Eq. (12), Poate et al. (2016) their Eq. (9), and 181 
Atkinson et al. (2017) M2 (their Eq. (15)). The empirical models, their applicability, and the data type 182 
from which they were derived (i.e., laboratory or field data) are detailed in Table 5. This subset of 183 
models was chosen for one or both of the following reasons: (1) the model was identified as an 184 
accurate model in a recent assessment of runup models (e.g., Holman, Vousdoukas, and Atkinson M2 185 
models were designated as the most accurate field derived models in Atkinson et al. (2017); Stockton 186 
was recommended by Blenkinsopp (2016), and Poate et al. (2016) found variations on their Eq. (12) 187 
to be the best predictor that did not incorporate grainsize); and/or (2) the model takes a different 188 
approach to parameterising runup or incorporates a variable that is not used in the models identified 189 
by reason (1) (e.g., Nielsen and Hanslow vary their formulation for runup depending on the beach 190 
slope while Poate Eq. (9) incorporates grainsize). As the majority of the dataset compiled in this study 191 
consists of field data, empirical models derived from laboratory data were not assessed here as 192 
Atkinson et al. (2017) showed that models derived from field data were, on average, more accurate 193 
for predicting runup in the field.  194 

Model performance was quantified through the use of the following statistical parameters: root mean 195 
square error (RMSE), normalised mean square error (NMSE), the coefficient of determination (r2), 196 
mean prediction error or bias (B), and scatter index (SI). These are calculated using: 197 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ �𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑,𝑖𝑖−𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖�
2

𝑖𝑖

𝑁𝑁
, (1) 198 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 1
𝑁𝑁
∑ �𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖−𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖�

2

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝��������.𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜�������𝑖𝑖 , (2) 199 
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 𝑟𝑟2 = �𝑁𝑁
∑ �𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖�𝑖𝑖 −∑ 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖𝑖𝑖 ∑ 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖𝑖𝑖

�∑ 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖𝑖𝑖
�
2

, (3) 200 

 𝐵𝐵 =
∑ �𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖−𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖�𝑖𝑖

𝑁𝑁
, and (4) 201 

 𝑆𝑆𝑆𝑆 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
∑ 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖𝑖𝑖

𝑁𝑁�
, (5) 202 

where Robs is the observed 2% runup exceedance level, Rpred is the predicted 2% runup exceedance 203 
level, and N is the number of observations. Low values of RMSE, NMSE, and SI (i.e., values approaching 204 
0) represent better model performance, as do values of r2 approaching 1. Negative values of B indicate 205 
the model underestimated the observed values while positive values indicate overestimations with 206 
B = 0 indicating no net over- or under-estimation. To further assess the uncertainty in model 207 
predictions, the standard deviation of prediction errors (Se) is calculated using: 208 

 𝑆𝑆𝑒𝑒 = �∑ ��𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖−𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖�−𝐵𝐵�
2

𝑖𝑖

𝑁𝑁−2
 (6) 209 

where B represents the mean prediction error as described above in Eq. (4). Using a Wilson score 210 
method without continuity correction, an uncertainty band can be defined around the predicted 211 
values of the mean prediction error (B) through the use of B±1.96Se to obtain an approximately 95% 212 
error uncertainty band (Atieh et al., 2017; Ebtehaj et al. 2018).  213 

 214 

4. GEP modelling 215 

For the purposes of GEP modelling, runup was converted to dimensionless runup (R2%/Hs, relative to 216 
the still water level) and was considered to be a function of three dimensionless variables: 217 

 𝑅𝑅2% 𝐻𝐻𝑠𝑠 = 𝑓𝑓�𝐻𝐻𝑠𝑠 𝐿𝐿𝑝𝑝⁄ , tan𝛽𝛽 , 𝑟𝑟 𝐻𝐻𝑠𝑠⁄ �⁄  (7) 218 

Several runs were performed to ensure adequate robustness and generalisation of the model derived. 219 
The fitting parameters of the GEP method were selected based on the previous studies of the authors 220 
(Ebtehaj et al. 2015a; 2017) and a number of preliminary runs. The population size (number of 221 
chromosomes, see Section 1.1) determines the execution time so that a model with higher population 222 
leads to longer execution time. Due to the problem complexity and the number of possible solutions, 223 
the population sizes considered were 30, 40, 50, 100, 150 and 200, with a final size of 50 chosen to 224 
reduce model size but ensure model accuracy. To evolve the chromosome architecture, it is necessary 225 
to characterize the number of sub-ETs and the degree of gene complexity, which, in the evolved 226 
model, are defined by the gene numbers and the head length respectively. The optimal values for the 227 
number of genes and the head length were obtained via trial and error and, in this study, were taken 228 
as 5 and 8 respectively. The optimal values of other parameters used in the GEP model are presented 229 
in Table 6. Due to the successful performance of the root relative squared error (RRSE) function in 230 
recent studies in hydraulic and hydrology fields (Khozani et al., 2017; Gholami et al., 2018), the fitness 231 
of the GEP model was determined by the fitness function of the program, fi: 232 
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 𝑓𝑓𝑖𝑖 = 1000
1+RRSE𝑗𝑗

 (8) 233 

where model fitness ranges from 0 to 1000, such that fi=1000 is a perfect fit. 234 

 235 

5. Results  236 

5.1. Empirical model assessment  237 

Figure 2 and Table 7 show the comparison between the observed and predicted runup using the seven 238 
empirical relationships assessed in this paper, and statistical measures of the performance of the 239 
empirical relationships against the full dataset. The relationships of Holman (1986) and Atkinson et al. 240 
(2017) had the joint lowest NMSE (0.23) and the lowest RMSE (1.05 and 1.06 respectively) with both 241 
also having small scatter indices (0.45 and 0.46 respectively) and 95% confidence intervals of the error 242 
uncertainty bands (-2.26 - 1.70 and -2.23 - 1.88 respectively). Poate et al. (2016) Eq. (12) had the lowest 243 
absolute bias (0.09) and the highest r2 value (0.72), with values for RMSE, NMSE, and the scatter index 244 
only marginally greater than those for the Holman (1986) and the Atkinson et al. (2017) M2 models. 245 
Poate et al. (2016) Eq. (9) had the lowest r2 value (0.56) and the Nielsen and Hanslow (1991) model 246 
had the highest RMSE (2.14), NMSE (0.55), bias (1.27), and scatter index (0.92). All models, excluding 247 
Nielsen and Hanslow (1991) and Poate et al. (2016) Eq. (9), underpredicted runup (see B in Table 7). 248 

The models that are based on a Hunt type scaling HLβα tan( ; i.e., Holman (1986), Nielsen and 249 

Hanslow (1991), Stockdon (2006), Vousdoukas et al. (2014), and Atkinson et al. (2017) M2) display two 250 
clear diverging trends in the model-data comparisons (see Figure 2a-d and Figure 2g), which are 251 
particularly evident at high runup values. This is not apparent in the Poate et al. (2016) models which 252 
take a different approach to scaling runup (𝑎𝑎 tan𝛽𝛽0.5 𝐻𝐻𝐻𝐻, Figure 2e-f) with grain size also incorporated 253 
in Poate et al. (2016) Eq. (12). The two data points with very large predicted R2% values were collected 254 
at collected at Chesil Beach (February 2014) during a storm event and have offshore wave parameters 255 
of Hs=7.17 m and Tp=23.7 s. Quality controlled data from the nearest offshore wave buoy show that 256 
Tp exceeded 24 s during this storm (i.e., these data points are not anomalous) and, consequently, the 257 
large values of Tp result in very large runup predictions using the empirical formula found in the 258 
literature due to their dependence on wave period. 259 

 260 

5.2. Empirical model optimisation 261 

In addition to assessing empirical model performance, model coefficients were optimised to obtain 262 
an improved fit with the newly compiled dataset presented in this study. Coefficients were optimised 263 
through an unconstrained optimisation with the objective of minimising the sum of the differences 264 
between predicted and observed 2% runup exceedance levels. The optimised empirical equations are 265 
shown in Table 8. 266 

In all cases, the empirical runup relationships with optimised coefficients showed improved or equal 267 
performance when compared with the unmodified empirical relationship for all measures of 268 
performance except bias (see Figure 3 cf. Figure 2, and Table 7 cf. Table 8). Only one optimised model, 269 
Poate et al. (2016) Eq. (12), showed an increased absolute bias of -0.14 when compared to the 270 
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unmodified equation (B=-0.09). For all other models, absolute bias was reduced with optimised 271 
coefficients. The best performing optimised model, on all measures of performance, was the Holman 272 
(1986) formulation that has the standard Hunt type scaling plus setup (also used in the Atkinson et al. 273 
M2 model). Interestingly, the two scaling coefficients for the optimised model have very different 274 
weightings relative to the original model. In the optimised model, the setup term (the 𝛾𝛾𝛾𝛾 term in 275 
𝛼𝛼 𝑡𝑡𝑡𝑡𝑡𝑡 𝛽𝛽 √𝐻𝐻𝐻𝐻 + 𝛾𝛾𝛾𝛾, where a and γ are independent scaling coefficients) is more heavily weighted than 276 
the runup term (the 𝛼𝛼 𝑡𝑡𝑡𝑡𝑡𝑡 𝛽𝛽 √𝐻𝐻𝐻𝐻 term; where a=0.83 and γ=0.2 in the original equation and a=0.5 277 
and γ=0.7 in the optimised equation). While the 𝛾𝛾𝛾𝛾 term is included in empirical equations of this 278 
form to represent setup, the increase in relative weighting of this term may not be solely due to setup 279 
but does represent an increase in the relative importance of wave height for predicting runup relative 280 
to the other parameters in these forms of empirical equations (i.e., tanβ and L). It also, therefore, 281 
suggests that beach slope and wave period are potentially less important than the Hunt approach 282 
would suggest. This is consistent with the Nielsen and Hanslow model for beaches with tan𝛽𝛽 < 0.1 283 
that does not include beach slope in the runup equation and may reflect the narrower relative range 284 
of periods observed in the field than in the Hunt laboratory data. 285 

On average, optimised equations showed increased r2 values by 0.06 and decreased RMSE and NMSE 286 
values by 0.40 m and 0.16 respectively, relative to the values obtained using the original model 287 
formulations. It is worthwhile noting that optimising the Holman (1986) formulation reduces the 288 
NMSE down from the typical error of 25% (identified by Atkinson et al. (2017) for the best models 289 
when applied to unseen data) to about 15%. This is the order of the error for individual models when 290 
optimised to the sub-datasets used to derive those same models (where reported). Thus, the present 291 
collated dataset has significant value to the research community in terms of model optimisation. 292 

Interestingly, the propensity for the models that are based on a Hunt type scaling to display two clear 293 
trends in the original model-data comparisons (see Figure 2) was reduced such that the model-data 294 
comparisons for the optimised Holman (1986) type formulation collapse to show a single pattern 295 
(Figure 4). The optimised Nielsen and Hanslow (1991), Stockdon et al. (2006), and Vousdoukas et al. 296 
(2014) models still display two trends in the model-data comparisons (Figure 3). 297 

 298 

5.3. GEP model 299 

The GEP model was trained using a subset (79%) of the dataset to avoid overfitting. The training data 300 
was chosen at random, and the remainder of the dataset was used to validate model performance as 301 
testing data (e.g., Thompson et al., 2016; Trenouth et al., 2016; Atieh et al., 2017). All variables were 302 
non-dimensionalised such that the input variables were: Hs/Lp, tanβ, and r/Hs; and the output variable 303 
was R2%/Hs. Model performance of the GEP model was quantified through the use of the same 304 
statistical parameters used to assess the empirical models (RMSE, NMSE, r2, B, SI, and Se) and 305 
performance was evaluated for each of the training, testing, and complete datasets. The final GEP 306 
model is shown in Eq. (9) (where x1=Hs/Lp, x2=tanβ, and x3=r/Hs) and Figure 5a.  307 
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R2%/Hs = (x2+(((x3.*3)/exp(-5)).*((3.*x3).*x3))) + ((((x1+x3)-2)-(x3-x2))+((x2-x1)-x3)) + 
(((x3.^x1)-(x3.^(1/3)))-(exp(x2).^(x1.*3))) + sqrt((((x3+x1)-x2)-(x2+log10(x3)))) + 
((((x2.^2)./(x1.^(1/3))).^(x1.^(1/3)))-sqrt(x3)) + ((x2+((x3./x1).^(1/3)))+(log(2)-
(1./(1+exp(-(x2+x3)))))) + ((sqrt(x3)-(((3.^2)+3).*(x2.^2))).^2) + 
((((x3.*-5).^2).^2)+(((x3+x3).*x1)./(x2.^2))) + 
log((sqrt(((x2.^2)+(x3.^(1/3))))+((x2+3).^(1/3)))) + 
((((x1./x3).*(-5.^2)).*(x3.^2))-log10((1./(1+exp(-(x2+x3)))))) + (x1.^x3) + 
exp(-((((x3./x1).^exp(4))+(exp(x3).^3)).^2)) + exp((log((x2-x3))-log(exp(-((-1+x1).^2))))) + 
((sqrt(4).*(((x3./x2)-x2)-(0-x1))).^2) + (2.*((((-5.*x3)+x1).*(2-x3))-2)) + 
((sqrt(4).*(((x3./x2)-x2)-(0-x1))).^2) + ((((-5+x1)-x2).*(x2-x3)).*((x1-x2)-(-4.^-5))) + 
(exp(-((x2+(-5-x1)).^2))+((x2+5).*(x3.^2))) + 
sqrt(1./(1+exp(-((exp(x1)-exp(-((x3+x3).^2)))+((x1.^x3)-(x3.*4)))))) + 
((exp(-((((exp(-(((sqrt(x3).*4) + (1./(1+exp(-(x2+2))))).^2))).^2)+x1).^2))).^3); (9) 

 308 
The GEP model consistently outperformed the empirical runup relationships as shown by all statistical 309 
parameters, with RMSE and NMSE for the full dataset of 0.75 m and 0.10 respectively and an r2 value 310 
of 0.82 (Table 8). These values represent a decrease in RMSE and NMSE of 12% and 29% respectively 311 
relative to the best performing optimised empirical model and of 29% and 57% respectively when 312 
compared to the best performing original empirical models. Additionally, the GEP achieves a 12% 313 
decrease in 95% prediction error uncertainty band when compared to the best performing optimised 314 
empirical model and a 25% decrease when compared to the best performing original empirical model 315 
(see Table 7 and Table 8). Only 15.5% of the testing dataset had predictions outside a 50% tolerance 316 
window. Further, the GEP model also outperformed both the original and optimised equations of 317 
Poate on the gravel beach subset of the dataset in all measures except bias (see Table 7 and Table 8). 318 
It should be noted that the GEP model was developed for the data ranges specified in Table 3 and 319 
Table 4 and is, therefore, untested outside of these data ranges, however, this is typically the case for 320 
the empirical relationships presented in the literature.  321 

Figure 6 shows non-dimensional runup plotted against the three input variables used in the GEP 322 
model, with data delineated by the beach and study from which the data were obtained. In general, 323 
R2%/Hs increases with decreasing Hs/Lp, with more rapid changes and greater variability in R2%/Hs for 324 
smaller values of Hs/Lp. The reverse is true for beach slope with increasing R2%/Hs with increasing 325 
tanβ. Trends between R2%/Hs and r/Hs are less clear and there is a high degree of variability within the 326 
dataset. It is also clear that, despite conforming to the overall trends, individual datasets display highly 327 
variable behaviour. Figure 7 shows a coplot of the full dataset and the GEP model (Eq. 8). This further 328 
confirms the observations from Figure 6 and shows that the trends observed in the data are well 329 
described by the GEP model (solid black lines) with the GEP showing increasing R2%/Hs with decreasing 330 
Hs/Lp and increasing R2%/Hs with increasing tanβ.  331 

To further investigate these trends, a multiway ANOVA with random effects was used to assess the 332 
relative importance of the three independent input variables (Hs/Lp, tanβ, and r/Hs) on the model 333 
outputs (R2%/Hs). Data were grouped into 20 equal divisions (i.e., 5 percentile ranges) for each variable 334 
range and the full factor space for the three variables each with 20 equal divisions was generated (i.e., 335 
203 combinations). Combinations of variables with no corresponding data points were then removed 336 
from analysis, leaving n=581 combinations of variables, and the mean model output was calculated 337 
for each combination. The variance components estimate for each independent variable were 338 
obtained from the ANOVA and converted to a percentage of total variance. This procedure was 339 
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repeated for 10 (n=318), 12 (n=402), 14 (n=452), 16 (n=513), and 18 (n=548) equal divisions to ensure 340 
the number of divisions was not affecting results. The mean percentage of total variance attributable 341 
to each of the three independent variables was consistent across the ANOVA models with different 342 
data groupings, with 23-25% (average of 24%) of variability attributable to Hs/Lp, 51-57% (53%) 343 
attributable to tanβ, and 15-19% (18%) attributable to r/Hs. The remaining 3-7% (6%) was not 344 
attributable to any of the three independent variables.  345 

Non-dimensional runup is shown against wave steepness and beach slope in Figure 8 as these are the 346 
two parameters identified as having the highest impact on the output parameters. A thin-plate spline 347 
interpolated surface is also shown to assist with the visualisation of the trends. It is clear that the 348 
trends described by the GEP (i.e., increasing non-dimensional runup with decreasing wave steepness 349 
and increasing non-dimensional runup with increasing beach slope) are seen in the data. Significant 350 
scatter is observed within the data, some of which may be attributable to grainsize/roughness effects 351 
which are not included in the figure, however, the results of the ANOVA analysis also suggest that 352 
there are additional factors that cause variability in runup levels beyond the variables investigated 353 
here (i.e., 3-7% of the variability could not be accounted for). Additional parameters, not accounted 354 
for in this study given the limits of the dataset, such as beach type, surf zone width, slope, and type, 355 
tidal phase, and nearshore bathymetric profiles that would alter wave transformation between the 356 
offshore and the surf zone, may also account for some of the scatter in this figure. In particular, 357 
Atkinson et al. (2017) found that model performance varied considerably at different tidal stages.  358 

To statistically identify the best performing model of all the models tested here, the Akaike 359 
information criterion (AIC) was used as it incorporates the number of model parameters by effectively 360 
penalising models with greater numbers of parameters (Burnham and Anderson, 2004). This therefore 361 
ensures a “fairer” comparison between the relatively simple empirical models that exist in the 362 
literature and the more complex GEP model developed here. The approach taken here is to use the 363 
least squares (LS) based version of the AIC formula which is expressed as: 364 

 AIC = 𝑁𝑁 log(𝑀𝑀𝑀𝑀𝑀𝑀) + 2𝐾𝐾 (10) 365 

where 366 

 𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ �𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖−𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖�

2
𝑖𝑖

𝑁𝑁
 (11) 367 

and K is the total number of parameters in the model including any intercepts. For the GEP model, a 368 
conservative approach was taken to determining the number of parameters by counting every 369 
constant and variable in Eq. (9). While the GEP model is not derived using a LS technique, this approach 370 
is considered approximately correct for our data as the criterion for fitting, RRSE (Eq. 8), is similar to 371 
the MSE used in LS modelling and the residuals are approximately normally distributed. The AIC value 372 
is computed for each model in a given set of models investigated and the models can be ranked from 373 
best (lowest AIC value) to worst. To enable effective comparison between AIC values, they are rescaled 374 
to:  375 

 ∆𝑖𝑖= AIC𝑖𝑖 − AICmin (12) 376 

where AICmin is the minimum AIC value of all the AIC values for each individual model (AIC i). Thus the 377 
best model has Δ i = 0 and all other models have Δ i > 0. Models with values of Δ i ≤ 2 have substantial 378 
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statistical support, i.e. they would be considered equivalent to the best model. Models with 4 ≤ Δ i ≤ 7 379 
have considerably less support, and models with Δ i > 10 have essentially no support, i.e. they would 380 
be considered definitely inferior to the best model (for further detail see Burnham and Anderson, 381 
2004). It is clear from the results shown in Table 9 that the GEP model is by far the statistically best 382 
model with all other models having Δ i values far in excess of Δ i >10. Even the best performing empirical 383 
model (the optimised Holman (1986) formulation) had a Δ i far in excess of Δ i =10 with Δ i =76.58. 384 
Further, the Akaike weights (wi) are calculated using: 385 

 𝑤𝑤𝑖𝑖 = exp(−∆𝑖𝑖/2)
∑ exp(−∆𝑟𝑟/2)𝑅𝑅
𝑟𝑟=1

 (12) 386 

for each individual model in the model set (r = 1,…,R) where Δ i is given in Eq. (12) above. The resultant 387 
values (wi) can be interpreted as the probabilities that a given model, i, in the model set is the best 388 
model for the data. The wi values clearly show that the GEP model with probability wi = 1 is the best 389 
model. The sum of all other wi values (i.e., the sum of the probabilities of any one of all the other 390 
models being correct) is 2.35x10-17 (Table 9). 391 

 392 

6. Discussion 393 

The dataset compiled here represents a wide range of wave and beach conditions that represent field 394 
conditions from below average (e.g., Atkinson et al. 2017) to energetic storm conditions (e.g., Poate 395 
et al. 2016) as well as both small and large scale laboratory conditions (Mase 1989, Baldock and 396 
Huntley 2002, Howe 2016). While the majority of the dataset compiled here is from field data sets or 397 
large scale lab data (89% of the dataset), there is potential for non-scalable physical characteristics to 398 
influence the measured runup in the two small scale laboratory datasets (Mase 1989, Baldock and 399 
Huntley 2002) and this is not accounted for in this study. 400 

The results of the model optimisation process confirm that, while the empirical models presented in 401 
the literature work well for the datasets against which they were calibrated, they are not universally 402 
applicable, with every empirical model tested improving in performance after model optimisation (see 403 
Table 8 c.f. Table 7). This suggests that the models are not fully capturing all the relevant factors 404 
controlling wave runup on beaches or that simplifying complex natural processes (such as varying 405 
wave spectra and non-planar beach slopes) to simple parameterisations (Hs, Lp, tanβ, and r) is 406 
insufficient. Additionally, model predictions changed drastically between datasets, with some datasets 407 
obtained from the same beach displaying vastly different predictions using the same model. For 408 
example, the Holman model (both original and optimised) over-predicts data from Duck82 but under-409 
predicts data from Duck94 (Figure 4). Despite this, the optimised form of the Holman equation, which 410 
is a Hunt style scaling parameter with an additional term for setup, was found to be the most accurate 411 
of the optimised empirical formulations.  412 

The GEP model provided a significant improvement in predictive ability when compared to the existing 413 
empirical relationships and is shown to be by far the statistically best model. Statistical measures for 414 
the GEP model compared to the whole dataset, such as correlation coefficient (r2=0.82) and 415 
normalised mean square error (NMSE=0.10), were consistently better than any observed for the 416 
empirical relationships (r2=0.77 and NMSE=0.14 for the best performing optimised model; Table 8) 417 
with improvements of 6% and 29% respectively.  418 
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6.1. GEP sensitivity analysis 419 

Any explicit expression provided to compute a parameter depends on a number of independent 420 
parameters. Therefore, the importance of each of these independent parameters on the proposed 421 
explicit expression must be investigated. In this study, the partial derivative sensitivity analysis (PDSA) 422 
method (Ebtehaj et al. 2015b; Azimi et al. 2017) is employed to study the trends in the variation of the 423 
ouput variable (R2%/Hs) due to variations in of each of the input variables (xi: Hs/Lp, tanβ, and r/Hs). 424 
Here, sensitivity is assessed by calculating the partial derivative (PD) of R2%/Hs with respect to each 425 
input parameter (i.e., 𝜕𝜕(𝑅𝑅2%/𝐻𝐻𝑠𝑠) 𝜕𝜕�𝐻𝐻𝑠𝑠/𝐿𝐿𝑝𝑝�⁄ , 𝜕𝜕(𝑅𝑅2%/𝐻𝐻𝑠𝑠) 𝜕𝜕(tan𝛽𝛽)⁄ , and 𝜕𝜕(𝑅𝑅2%/𝐻𝐻𝑠𝑠) 𝜕𝜕(𝑟𝑟 𝐻𝐻𝑠𝑠⁄ )⁄ ) and 426 
calculating the corresponding value for each data point (Figure 5). The absolute magnitude of the PD 427 
value indicates the degree of influence of a given input parameter (xi) on R2%/Hs (i.e., a larger absolute 428 
PD value indicate a greater degree of influence of xi on R2%/Hs) and the sign of the PD value, positive 429 
or negative, represents the sign of the trend (i.e., a positive (negative) PD value results in an increase 430 
(decrease) of R2%/Hs with increasing xi).  431 

The PDSA results of the GEP expression proposed here are shown in Figure 5b-e. The sensitivity trends 432 
of all three independent variables on R2%/Hs are not constant, such that different ranges of each of 433 
the independent variables result in varying sensitivities of the output variable, i.e., the trends are 434 
highly non-linear. The sensitivity of the proposed model to Hs/Lp is greatest for low values of Hs/Lp 435 
with large negative sensitivities indicating large decreases in R2%/Hs for small increases in Hs/Lp (Figure 436 
5b). As Hs/Lp increases, the magnitude of the sensitivity decreases such that increases in Hs/Lp result 437 
in smaller decreases of R2%/Hs. The majority of sensitivity values for tanβ are positive, with a slight 438 
trend of increasing positive sensitivity with increasing tanβ thus implying more rapid increases in 439 
R2%/Hs with increases in tanβ for larger values of tanβ (Figure 5c). The sensitivity of the model to low 440 
values of r/Hs is highly variable with no specific trends in the sensitivity of r/Hs in this range of r/Hs 441 
(Figure 5d). For larger values of r/Hs (r/Hs>0.03), the sensitivity indicates a decrease in R2%/Hs for 442 
increases in r/Hs (Figure 5e) with the magnitude of sensitivity decreasing such that increases in r/Hs 443 
at larger values of r/Hs result in smaller decreases of R2%/Hs. The high variability in the influence of 444 
r/Hs may be due in part to variability in the way that r is defined for the different field sites (i.e., D50). 445 
Given the compiled nature of the dataset used here, sediment sampling and analysis techniques are 446 
unlikely to be consistent across all datasets and, additionally, the representation of a sediment 447 
grainsize distribution with one value may not be fully appropriate for all sites.  448 

The sensitivity analyses further confirm that Hs/Lp and tanβ are the primary factors influencing wave 449 
runup, with r/Hs having a smaller, but still significant influence on the runup. This is in agreement with 450 
previous research that identified wave height, length, and beach slope as the primary factors affecting 451 
wave runup (e.g., Holman, 1986, Stockton et al., 2006, Blenkinsopp et al., 2016, and Atkinson et al., 452 
2017). The relative impact analysis also confirms that roughness or grainsize influences wave runup in 453 
agreement with the results of Poate et al. (2016). While the relative impact analysis allows for an 454 
assessment of the relative importance of the input variables, it does not provide insights into the 455 
functional form of the degree of influence. Figure 6, Figure 7, and Figure 8 show that a linear influence 456 
may be an incorrect assumption and this will be the focus of future work. The relative influence of 457 
each parameter changes dramatically across the parameter space as illustrated in Figure 6, Figure 7, 458 
and Figure 8. These figures show that the influence of wave steepness on runup is more significant at 459 
higher beach slopes and the influence of beach slope is most significant for lower values of wave 460 
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steepness. Both trends are consistent with swash processes dominating over surf zone processes, i.e., 461 
reflective beaches.  462 

 463 

7. Conclusions 464 

This study has compiled a large dataset of wave runup observations collected under a wide range of 465 
conditions (laboratory and field, 0.019 ≤ Hs ≤ 7.17 m, 0.81 ≤ Tp ≤ 23.7 s, 0.009 ≤ tanβ ≤ 0.29, 466 
0.000003 ≤ r ≤ 0.125 m; N = 1390) and used this novel dataset to assess the accuracy of commonly 467 
used empirical runup models and to develop a data-driven explicit GEP model to predict wave runup. 468 
We show that the best performing empirical models in the literature are prone to significant errors 469 
(minimum NMSE 0.23) when used with unseen data, i.e., uncalibrated models. Overall error values 470 
are significantly reduced (NMSE decreases between up to 58%) and correlations increased (by up to 471 
23%) when individual models are optimised for the whole dataset. The best performing empirical 472 
model uses a Hunt type scaling with an additional parameter for wave induced setup as proposed by 473 
Holman (1986). These model types were also among the best performers in their non-optimised 474 
(original) form. The predictive ability of the explicit GEP model developed here was shown to be 475 
statistically significantly better than all other empirical models, confirming the impressive predictive 476 
ability of GEP models, albeit with a more complex expression. This highlights that the runup process 477 
is more complex than what is suggested by the simple empirical models that are widely used in the 478 
literature. Nevertheless, calculation of the runup from the explicit GEP model is still a trivial task with 479 
regard to parametric modelling of wave runup. Wave height, wavelength, and beach slope are 480 
confirmed to be the three primary factors influencing wave runup, with grain size having a smaller, 481 
but still significant influence on the runup. The high-degree of non-linearity between the key input 482 
variables and runup over the wide range of the data set is described and the new model developed 483 
here is shown to better account for this non-linearity. Sensitivity analysis demonstrates the 484 
importance of wave steepness and beach slope as key parameters for predicting runup and that 485 
normalised runup increases with increasing Iribarren number, i.e., as surf zone energy dissipation 486 
reduces.  487 
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Figures 597 

 598 

Figure 1. Flowchart detailing the GEP technique (from Ferreira, 2001). The reproduction processes 599 
shown here are detailed in Table 2. 600 

 601 
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 602 

Figure 2. Comparisons of observed (Robs) and predicted (Rpred) 2% runup exceedance levels for the 603 
seven empirical models tested: (a) Holman (1986), (b) Nielsen and Hanlsow (1991), (c) Stockdon et 604 
al. (2006), (d) Vousdoukas et al. (2014), (e) Poate et al. (2016) their Eq. 12, (f) Poate et al. (2016) 605 
their Eq. 9, and (g) Atkinson (2017) M2.  606 
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 607 

Figure 3. Comparisons of observed (Robs) and predicted (Rpred) 2% runup exceedance levels for the six 608 
optimised empirical models: (a) Holman (1986)/Atkinson (2017) M2, (b) Nielsen and Hanlsow (1991), 609 
(c) Stockdon et al. (2006), (d) Vousdoukas et al. (2014), (e) Poate et al. (2016) their Eq. 12, and (f) 610 
Poate et al. (2016) their Eq. 9.  611 

  612 
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 613 

Figure 4. Comparisons of observed (Robs) and predicted (Rpred) 2% runup exceedance levels for the (a) 614 
original and (b) optimised Holman empirical model (see Figure 2a and Figure 3a respectively) shown 615 
on a log scale with points coded by dataset. The 1:1 line is shown in black and the 25% error lines are 616 
shown by the dashed lines.  617 

 618 

 619 

Figure 5. GEP Model predictions and sensitivity analysis: (a) comparison of observed and predicted 620 
runup as calculated using the GEP model; and partial derivative sensitivity for each of the three input 621 
variables: (b) Hs/Lp, (c) tanβ, and (d) r/Hs. The inset panel (e) in panel (d) shows the area delineated 622 
by the red box in panel (d). The 1:1 line is shown in black in (a).  623 
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 624 

 625 

Figure 6. Non-dimensional runup plotted against (a) wave steepness, (b) beach slope, and (c) r/Hs for 626 
all datasets.  627 

  628 
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 629 

Figure 7. Coplot of the full dataset (grey points) for the three non-dimensional variables: Hs/Lp, tanβ, 630 
and r/Hs. Each column of panels represents one of four subdivisions of r/Hs shown in the top plot 631 
and each row of panels represents one of six subdivisions of tanβ shown in the right hand side plot. 632 
The subdivisions of tanβ and r/Hs each contain an equal number of data points with 10% overlap 633 
between each subdivision. The median value for each subdivision is shown by the red lines in the top 634 
and right hand side plots. The black solid lines in each panel represent the GEP model output 635 
(R2%/Hs) for the data range of Hs/Lp shown in each panel calculated using the median values tanβ 636 
and r/Hs for that subdivision, i.e., the median of all data presented in a given row or column 637 
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respectively not the median value of the data presented in each panel. The empty panel indicates 638 
there were no data for that combination of values of tanβ and r/Hs.  639 

 640 

Figure 8. Three dimensional scatter plot of non-dimensional runup against wave steepness and 641 
beach slope for all datasets. A semi-transparent, thin-plate spline interpolated surface is also shown 642 
to assist with the visualisation.  643 

 644 
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Tables 645 

Table 1. Examples of how genes and chromosomes can be converted to algebraic expressions. The genotype is translated to the phenotype by reading from 646 
left to right and creating the expression trees (ETs) shown. The single gene creates a single ET while the chromosome with two genes creates two sub-ETs 647 
that are combined through addition (in this example) to form a final ET. The ETs can then be converted to algebraic expressions for evaluation. Genes can 648 
be inferred from expression trees by reading the expression tree from top-to-bottom and left-to-right. Note that “Q” represents the square root function 649 
and the tail of each gene is shown in bold type. Modified from Ferreira (2001). 650 

 Single gene Chromosome with two genes 
Genotype 012345678901234567890 

+Q-/b*+*Qbaabaabbaaab 
012345678012345678 
Q*Q+bbaaa*-babaabb 

Head length 10 4 
Tail length 11 5 
Gene length 21 9 
Sub-ET linking function N/A Addition 
Sub-expression trees N/A Sub-ET1 

 

Sub-ET2 

 

Phenotype (expression tree) 

  
Algebraic expression �2𝑎𝑎 𝑏𝑏𝑏𝑏⁄ + 𝑏𝑏 − √𝑎𝑎𝑏𝑏 �√𝑏𝑏(𝑏𝑏 + 𝑎𝑎) + (𝑎𝑎 − 𝑏𝑏)𝑏𝑏 

 651 

  652 
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 653 

Table 2. Examples of how genomes and chromosomes are reproduced through various methods of genome modification. One chromosome consisting of 654 
one gene is shown for replication, one chromosome with two genes is shown for mutation, insertion sequence transposition, root insertion sequence 655 
transposition, and gene transposition, and two chromosomes of two genes each are shown for one-point recombination, two-point recombination, and 656 
gene recombination. Tails of genes are shown in bold and modifications are highlighted in red. Modified from Ferreira (2001). 657 

 Original genome Reproduced genome 
Replication  012345678901234567890 

+Q-/b*+*Qbaabaabbaaab 
012345678901234567890 
+Q-/b*+*Qbaabaabbaaab 

Mutation 012345678012345678012345678 
-+-+abaaa/bb/ababb*Q*+aaaba 

012345678012345678012345678 
Q+-+abaaa/bbQababb*b*+aaaba 

Insertion 
sequence 
transposition 

012345678901234567890012345678901234567890 
*-+*a-+a*bbabbaabababQ**+abQbb*aabbaaaabba 

012345678901234567890012345678901234567890 
*-+*a-bba+babbaabababQ**+abQbb*aabbaaaabba 

Root insertion 
sequence 
transposition 

012345678901234567890012345678901234567890 
-ba*+-+-Q/abababbbaaaQ*b/+bbabbaaaaaaaabbb 

012345678901234567890012345678901234567890 
-ba*+-+-Q/abababbbaaa+bbQ*b/+bbaaaaaaaabbb 

Gene 
transposition 

012345678012345678012345678 
*a-*abbab-QQ/aaabbQ+abababb 

012345678012345678012345678 
-QQ/aaabb*a-*abbabQ+abababb 

One-point 
recombination 

012345678012345678 
-b+Qbbabb/aQbbbaab 
/-a/ababb-ba-abaaa 

012345678012345678 
/-aQbbabb/aQbbbaab 
-b+/ababb-ba-abaaa 

Two-point 
recombination 

0123456789001234567890 
+*a*bbcccac*baQ*acabab 
*cbb+cccbcc++**bacbaab 

0123456789001234567890 
*cbb+ccccac*ba*bacbaab 
+*a*bbccbcc++*Q*acabab 

Gene 
recombination 

012345678012345678012345678 
/aa-abaaa/a*bbaaab/Q*+aaaab 
/-*/abbabQ+aQbabaa-Q/Qbaaba 

012345678012345678012345678 
/aa-abaaaQ+aQbabaa/Q*+aaaab 
/-*/abbab/a*bbaaab-Q/Qbaaba 

 658 

  659 
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 660 

Table 3. Field datasets used in this study showing field site and experiment, the mean (and range) of significant wave height (Hs), peak wave period (Tp), 661 
and swash zone slope (tanβ), beach face grain size (GS), and the number of data points from each location. The bottom row shows the mean (and range) of 662 
each parameter for the full field dataset. 663 

Dataset Beach (experiment) Hs [m] Tp [s] tanβ [-] GS [m] Data points 
Nicolae Lerma et al. (2017)  Truc Vert, France 4.30 (3.09-6.37) 14.6 (13.3-16.3) 0.069 (0.060-0.081) 0.00035 17 
Atkinson et al. (2017) Austinmer, Australia 0.73 (0.72-0.74) 6.4 (6.4-6.4) 0.11 (0.10-0.12) 0.000445 5 
Atkinson et al. (2017) Beares, Australia 0.79 (0.78-0.79) 8.6 (8.6-8.6) 0.073 (0.071-0.074) 0.000511 9 
Atkinson et al. (2017) Mollymook, Australia 0.89 (0.89-0.91) 8.5 (8.5-8.5) 0.16 (0.15-0.19) 0.000426 10 
Atkinson et al. (2017) Tathra, Australia 1.16 (1.14-1.19) 7.0 (7.0-7.0) 0.082 (0.07.-0.089) 0.00029 9 
Atkinson et al. (2017) Werri, Australia 0.65 (0.55-0.75) 8.0 (7.0-9.3) 0.074 (0.051-0.11) 0.000511 26 
Atkinson et al. (2017) Wonoona, Australia 0.93 (0.92-0.93) 6.4 (6.4-6.4) 0.11 (0.093-0.12) 0.000346 12 
Poate et al. (2016) Chesil, U.K. 2.54 (1.68-7.17) 10.1 (6.3-23.7) 0.24 (0.17-0.29) 0.05 214 
Poate et al. (2016) Loe Bar, U.K. 3.09 (1.43-5.69) 9.8 (7.1-20.0) 0.11 (0.098-0.12) 0.003 324 
Poate et al. (2016) Slapton Sands, U.K. 1.65 (1.04-2.09) 8.3 (4.8-11.7) 0.14 (0.13-0.17) 0.01 98 
Poate et al. (2016) Hayling Island, U.K. 2.53 (2.08-3.50) 11.8 (9.1-22.2) 0.094 (0.088-0.096) 0.02 26 
Stockdon et al. (2006) Agate, U.S.A. 2.48 (1.85-3.14) 11.9 (7.1-14.3) 0.016 (0.012-0.023) 0.0002 14 
Stockdon et al. (2006) Duck, U.S.A. (Delilah) 1.40 (0.52-2.51) 9.3 (4.7-14.8) 0.091 (0.033-0.13) 0.0015 138 
Stockdon et al. (2006) Duck, U.S.A. (Duck82) 1.71 (0.48-4.08) 11.9 (6.3-16.5) 0.12 (0.090-0.16) 0.0015 36 
Stockdon et al. (2006) Duck, U.S.A. (Duck94) 1.89 (0.73-4.06) 10.5 (3.8-14.8) 0.079 (0.056-0.095) 0.0015 52 
Stockdon et al. (2006) Gleneden, U.S.A. 2.06 (1.83-2.25) 12.4 (10.4-16.0) 0.080 (0.030-0.11) 0.0004 42 
Stockdon et al. (2006) Duck, U.S.A. (SandyDuck) 1.37 (0.35-3.57) 9.5 (3.7-15.4) 0.094 (0.053-0.14) 0.0015 95 
Stockdon et al. (2006) San Onofre, U.S.A. 0.81 (0.51-1.07) 14.9 (13.0-17.0) 0.10 (0.074-0.13) 0.0002 59 
Stockdon et al. (2006) Terschelling, The Netherlands 1.83 (0.51-3.93) 8.25 (4.8-10.6) 0.017 (0.009-0.032) 0.000225 14 
Stockdon et al. (2006) Scripps, U.S.A. (USWASH) 0.69 (0.54-0.84) 10.0 (10.0-10.0) 0.98 (0.025-0.055) 0.0002 41 
  2.10 (0.35-7.17) 10.0 (3.7-23.7) 0.12 (0.0090-0.29) 0.011 (0.0002-0.05) 1242 

 664 

 665 
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Table 4. Laboratory datasets used in this study showing slope type, the mean (and range) of significant wave height (Hs) and peak wave period (Tp), the 666 
value or range of the swash zone slope (tanβ), hydraulic roughness length (r), and the number of data points from each dataset. The bottom row shows the 667 
mean (and range) of each parameter for the full laboratory dataset. 668 

Dataset Slope type Hs [m] Tp [s] tanβ [-] r [m] Data points 
Baldock and Huntley (2002) Plane 0.039 (0.019-0.066) 1.61 (1.03-1.98) 0.1 0.000003 16 
Howe (2016) Plane 0.86 (0.82-0.91) 11.8 (9.8-13.7) 0.167 0.000003 &  

0.01175 
12 

Mase (1989) Plane 0.062 (0.026-0.11) 1.52 (0.81-2.50) 0.033 – 0.2 0.0001 120 
  0.12 (0.019-0.091) 2.4 (0.81-13.7) 0.10 (0.33-0.20) 0.00040 (0.000003-0.01175) 148 

 669 

Table 5. Summary of published empirical models for predicting 2% runup exceedance heights assessed in this study. 670 

Authors Empirical model Applicability Study conditions 
Holman (1986) 0.83 tan𝛽𝛽�𝐻𝐻𝑠𝑠𝐿𝐿𝑝𝑝 + 0.2𝐻𝐻𝑠𝑠  Field  
Nielsen and Hanslow 
(1991) 

1.98𝐿𝐿𝑅𝑅 + 𝑍𝑍100%** 
𝐿𝐿𝑅𝑅 = 0.85 tan𝛽𝛽�𝐻𝐻𝑠𝑠𝐿𝐿𝑠𝑠 

tan𝛽𝛽 ≥ 0.1 Field  

 𝐿𝐿𝑅𝑅 = 0.085�𝐻𝐻𝑠𝑠𝐿𝐿𝑠𝑠  tan𝛽𝛽 < 0.1  
Stockdon et al. (2006) 0.043�𝐻𝐻𝑠𝑠𝐿𝐿𝑝𝑝 𝜉𝜉𝑝𝑝 < 0.3 Field 
 

1.1

⎝

⎛
�𝐻𝐻𝑠𝑠𝐿𝐿𝑝𝑝(0.563𝛽𝛽2 + 0.004)

2
+ 0.35𝛽𝛽�𝐻𝐻𝑠𝑠𝐿𝐿𝑝𝑝

⎠

⎞  

𝜉𝜉𝑝𝑝 ≥ 0.3  

Vousdoukas et al. (2014) 0.53𝛽𝛽�𝐻𝐻𝑠𝑠𝐿𝐿𝑝𝑝 + 0.58 tan𝛽𝛽𝐻𝐻𝑠𝑠 + 0.45  Field  
Poate et al. (2016) Eq. 
(12) 

0.33 tan𝛽𝛽0.5 𝑇𝑇𝑝𝑝𝐻𝐻𝑠𝑠  Field + modelled 

Poate et al. (2016) Eq. (9) 0.21𝐷𝐷50−0.15 tan𝛽𝛽0.5 𝑇𝑇𝑚𝑚−1𝑚𝑚0𝐻𝐻𝑠𝑠 **  Field + modelled 
Atkinson et al. (2017) M2 0.92 tan𝛽𝛽�𝐻𝐻𝑠𝑠𝐿𝐿𝑝𝑝 + 0.16𝐻𝐻𝑠𝑠  Model of models (derived from models 

fitted to field + large scale lab) 
Note that: * indicates that the Z100% is approximated as the tide varying water level (i.e., SWL); and ** indicates that the standard value of Tp was used in 671 
place of Tm-1m0 due to data availability.   672 
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Table 6. The optimal parameters used for the GEP model. 673 

Parameter Optimal value 
Number of generations 190000 
Population size 50 
Function set +, -, ×, /, exp, √2 , √3 , x2, log, ln 
Number of genes 5 
Head size 8 
Linking function Addition 
Mutation rate 0.004 
Inversion rate 0.15 
One point recombination rate 0.35 
Two point recombination rate 0.35 
Gene recombination rate 0.1 
Gene transposition rate 0.1 

 674 
Table 7. Performance of unmodified empirical relationships against full dataset as described by root mean square error (RMSE), normalised mean square 675 
error (NMSE), correlation (r2), bias (B), scatter index (SI), standard deviation of prediction errors (Se), and approximate 95% confidence interval of error 676 
uncertainty band (B±1.96Se). Italicised numbers represent the empirical model that performed best or equal best according to each metric. Numbers in 677 
brackets represent the values for the gravel subset of the field dataset (i.e., GS≥0.002 m).  678 

Authors RMSE [m] NMSE [-] r2 [-] B [m] SI [m] Se [m] B±1.96Se [m] 
Holman (1986) 1.05 0.23 0.68 -0.28 0.45 1.01 -2.26 - 1.70 
Nielsen and Hanslow (1991) 2.14 0.55 0.57 1.27 0.92 1.72 -2.11 - 4.65 
Stockdon et al. (2006) 1.21 0.36 0.63 -0.55 0.52 1.08 -2.67 - 1.58 
Vousdoukas et al. (2014) 1.36 0.49 0.63 -0.68 0.59 1.18 -2.99 - 1.63 
Poate et al. (2016) Eq. (12) 1.12 (1.38) 0.24 (0.16) 0.72 (0.75) -0.09 (0.11) 0.48 (0.39) 1.12 -2.28 - 2.11 
Poate et al. (2016) Eq. (9) * 2.02 (1.70) 0.45 (0.19) 0.56 (0.71) 1.01 (0.79) 0.79 (0.48) 1.75 -2.43 - 4.44 
Atkinson et al. (2017) M2 1.06 0.23 0.66 -0.18 0.46 1.05 -2.23 - 1.88 

Note that: * indicates that the relationship was only tested against the field data subset of the full dataset due to the inclusion of grain size in the 679 
relationship. 680 
  681 
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Table 8. Empirical runup relationships with optimised coefficients and performance of optimised empirical relationships against full dataset as described by 682 
root mean square error (RMSE), normalised mean square error (NMSE), correlation (r2), bias (B), scatter index (SI), standard deviation of prediction errors 683 
(Se), and approximate 95% confidence interval of error uncertainty band (B±1.96Se). Performance of the GEP model is also shown. Italicised numbers 684 
represent the model that performed best or equal best according to each metric out of the optimised empirical models. Numbers in brackets represent the 685 
values for the gravel subset of the field dataset (i.e., GS≥0.002 m). 686 

Authors Empirical model Applicability RMSE [m] NMSE [-] r2 [-] B [-] SI [-] Se [m] B±1.96Se [m] 
Holman (1986) & Atkinson 
et al. (2017) M2 

0.50 tan𝛽𝛽�𝐻𝐻𝑠𝑠𝐿𝐿𝑝𝑝 + 0.70𝐻𝐻𝑠𝑠  0.85 0.14 0.77 0.01 0.37 0.85 -1.67 - 1.68 

Nielsen and Hanslow 
(1991) 

1.85𝐿𝐿𝑅𝑅 + 𝑍𝑍100%** 
     𝐿𝐿𝑅𝑅 = 0.52 tan𝛽𝛽�𝐻𝐻𝑠𝑠𝐿𝐿𝑠𝑠 

tan𝛽𝛽 ≥ 0.1 1.19 0.29 0.59 -0.22 0.51 1.16 -2.60 - 1.93 

 1.98𝐿𝐿𝑅𝑅 + 𝑍𝑍100%** 
     𝐿𝐿𝑅𝑅 = 0.042�𝐻𝐻𝑠𝑠𝐿𝐿𝑠𝑠  

tan𝛽𝛽 < 0.1        

Stockdon et al. (2006) 0.048�𝐻𝐻𝑠𝑠𝐿𝐿𝑝𝑝 𝜉𝜉𝑝𝑝 < 0.3 1.07 0.23 0.65 -0.15 0.46 1.06 -2.23 - 1.93 
 

1.2�
�𝐻𝐻𝑠𝑠𝐿𝐿𝑝𝑝(0.657𝛽𝛽2 + 0.008)

1.974

+ 0.352𝛽𝛽�𝐻𝐻𝑠𝑠𝐿𝐿𝑝𝑝�  

𝜉𝜉𝑝𝑝 ≥ 0.3        

Vousdoukas et al. (2014) 0.005𝛽𝛽�𝐻𝐻𝑠𝑠𝐿𝐿𝑝𝑝 + 4.563 tan𝛽𝛽𝐻𝐻𝑠𝑠 + 0.458  1.02 0.21 0.68 -0.18 0.44 1.12 -2.93 - 1.44 
Poate et al. Eq. (12) 0.309 tan𝛽𝛽0.48 𝑇𝑇𝑝𝑝𝐻𝐻𝑠𝑠  1.10 0.24 0.72 -0.14 0.47 1.09 -2.28 - 1.99 
Poate et al. Eq. (9)* 0.359𝐷𝐷50−0.1 tan𝛽𝛽0.797 𝑇𝑇𝑝𝑝𝐻𝐻𝑠𝑠 *  1.11 0.19 0.69 -0.08 0.43 1.11 -2.26 - 2.09 
GEP model (Eq. 9) Training Dataset  0.71 0.09 0.84 0.15 0.31 0.70 -1.21 – 1.52 
GEP model (Eq. 9) Testing Dataset  0.89 0.17 0.86 -0.45 0.37 0.77 -1.96 – 1.06 
GEP model (Eq. 9) Whole Dataset  0.75 (0.81) 0.10 

(0.06) 
0.82 
(0.81) 

0.03 
(-0.22) 

0.33 
(0.23) 

0.75 
(0.78) 

-1.45 – 1.51 
(-1.75 – 1.30) 

Note that * indicates that the relationship was only tested against the field data subset of the full dataset due to the inclusion of grain size in the 687 
relationship; and ** indicates that the Z100% is approximated as the tide varying water level (i.e., SWL). Also note that the M2 model of Atkinson et al. has 688 
the same functional form as that derived by Holman (1986).  689 

 690 

  691 
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Table 9. Akaike information criterion (AIC) analysis showing the mean squared error value (MSE), the number of model parameters (K), the AIC value, the 692 
rescaled AIC values (Δ i), and the Akaike Weights (wi). See text in Section 5.3 for explanation of parameters.  693 

 Authors MSE [m2] K  AIC Δ i  wi 

O
rig

in
al

 e
qu

at
io

ns
 Holman (1986) 1.10 3 133.62 642.28 3.39E-140 

Nielsen and Hanslow (1991) 4.58 4 2123.40 2632.06 0.00E+00 
Stockdon et al. (2006) 1.47 7 549.41 1058.07 1.75E-230 
Vousdoukas et al. (2014) 1.84 4 859.09 1367.75 9.91E-298 
Poate et al. (2016) Eq. (12) 1.26 2 326.57 835.23 4.28E-182 
Poate et al. (2016) Eq. (9) * 4.07 2 1954.36 2463.02 0.00E+00 
Atkinson et al. (2017) M2 1.13 3 174.55 683.21 4.39E-149 

O
pt

im
ise

d 
eq

ua
tio

ns
 

Holman (1986) & Atkinson et al. (2017) M2 0.73 3 -432.09 76.58 2.35E-17 
Nielsen and Hanslow (1991) 1.44 4 517.54 1026.20 1.46E-223 
Stockdon et al. (2006) 1.15 7 202.95 711.61 3.00E-155 
Vousdoukas et al. (2014) 1.80 4 824.24 1332.91 3.66E-290 
Poate et al. (2016) Eq. (12) 1.21 2 264.39 773.05 1.36E-168 
Poate et al. (2016) Eq. (9) * 1.23 2 295.71 804.37 2.16E-175 

 GEP model (Eq. 9) 0.57 137 -508.66 0.00 1.00E+00 
Note that * indicates that the relationship was only tested against the field data subset of the full dataset due to the inclusion of grain size in the 694 
relationship. 695 
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